CJ : Code d'entreprise
M : Disjoncteur à boîtier moulé
1 : Modèle n°
□ : Courant nominal du cadre
□ : Code caractéristique de capacité de rupture / S désigne le type standard (S peut être omis) H désigne le type supérieur
Remarque : Il existe quatre types de pôle neutre (pôle N) pour les produits à quatre phases. Le pôle neutre de type A n’est pas équipé d’un élément de déclenchement de surintensité, il est toujours sous tension et n’est pas mis sous tension ou hors tension simultanément avec les trois autres pôles.
Le pôle neutre de type B n'est pas équipé d'un élément de déclenchement en cas de surintensité et sa mise sous tension ou hors tension est liée à celle des trois autres pôles (le pôle neutre est mis sous tension avant d'être mis hors tension). Le pôle neutre de type C est équipé d'un élément de déclenchement en cas de surintensité et sa mise sous tension ou hors tension est liée à celle des trois autres pôles (le pôle neutre est mis sous tension avant d'être mis hors tension). Le pôle neutre de type D est équipé d'un élément de déclenchement en cas de surintensité ; il est toujours sous tension et sa mise sous tension ou hors tension n'est pas liée à celle des trois autres pôles.
| Nom de l'accessoire | diffusion électronique | Libération du composé | ||||||
| Contact auxiliaire, déclencheur sous tension, contact d'alarme | 287 | 378 | ||||||
| Deux jeux de contacts auxiliaires, contact d'alarme | 268 | 368 | ||||||
| Déclencheur de shunt, contact d'alarme, contact auxiliaire | 238 | 348 | ||||||
| Déclenchement en cas de sous-tension, contact d'alarme | 248 | 338 | ||||||
| contact auxiliaire contact d'alarme | 228 | 328 | ||||||
| Contact d'alarme de déclenchement du shunt | 218 | 318 | ||||||
| Déclenchement par sous-tension du contact auxiliaire | 270 | 370 | ||||||
| Deux jeux de contacts auxiliaires | 260 | 360 | ||||||
| Déclenchement par shunt, déclenchement en cas de sous-tension | 250 | 350 | ||||||
| contact auxiliaire de libération du shunt | 240 | 340 | ||||||
| Déclenchement en cas de sous-tension | 230 | 330 | ||||||
| Contact auxiliaire | 220 | 320 | ||||||
| Déclenchement du shunt | 210 | 310 | ||||||
| Contact d'alarme | 208 | 308 | ||||||
| Aucun accessoire | 200 | 300 | ||||||
| 1 Valeur nominale des disjoncteurs | ||||||||
| Modèle | Imax (A) | Spécifications (A) | Tension de fonctionnement nominale (V) | Tension d'isolation nominale (V) | Icu (kA) | Ics (kA) | Nombre de pôles (P) | Distance d'arc (mm) |
| CJMM1-63S | 63 | 6, 10, 16, 20 25, 32, 40, 50,63 | 400 | 500 | 10* | 5* | 3 | ≤50 |
| CJMM1-63H | 63 | 400 | 500 | 15* | 10* | 3,4 | ||
| CJMM1-100S | 100 | 16, 20, 25, 32 40, 50, 63, 80 100 | 690 | 800 | 35/10 | 22/5 | 3 | ≤50 |
| CJMM1-100H | 100 | 400 | 800 | 50 | 35 | 2,3,4 | ||
| CJMM1-225S | 225 | 100 125 160 180 200 225 | 690 | 800 | 35/10 | 25/5 | 3 | ≤50 |
| CJMM1-225H | 225 | 400 | 800 | 50 | 35 | 2,3,4 | ||
| CJMM1-400S | 400 | 225 250 315 350 400 | 690 | 800 | 50/15 | 35/8 | 3,4 | ≤100 |
| CJMM1-400H | 400 | 400 | 800 | 65 | 35 | 3 | ||
| CJMM1-630S | 630 | 400 500 630 | 690 | 800 | 50/15 | 35/8 | 3,4 | ≤100 |
| CJMM1-630H | 630 | 400 | 800 | 65 | 45 | 3 | ||
| Remarque : Lorsque les paramètres de test pour 400 V, 6 A sans dégagement de chaleur sont activés, le dispositif se déclenche. | ||||||||
| 2. Caractéristique de fonctionnement à temps inverse lorsque chaque pôle du dispositif de déclenchement de surintensité pour la distribution d'énergie est alimenté simultanément. | ||||||||
| Élément de test Courant (I/In) | Zone de test | État initial | ||||||
| Courant de non-déclenchement 1,05 po | 2h(n>63A),1h(n<63A) | État froid | ||||||
| Courant de déclenchement 1,3 pouce | 2h(n>63A),1h(n<63A) | Procédez immédiatement après le test n°1 | ||||||
| 3 Caractéristique de fonctionnement à temps inverse lorsque chaque pôle de sur- Le dispositif de déclenchement pour la protection du moteur est activé simultanément. | ||||||||
| Réglage de l'heure conventionnelle actuelle État initial | Note | |||||||
| 1 pouce | >2h | État froid | ||||||
| 1,2 pouce | ≤2h | L'opération a été menée immédiatement après le test n° 1. | ||||||
| 1,5 pouce | ≤4 min | État froid | 10≤In≤225 | |||||
| ≤8 min | État froid | 225≤In≤630 | ||||||
| 7,2 pouces | 4s≤T≤10s | État froid | 10≤In≤225 | |||||
| 6s≤T≤20s | État froid | 225≤In≤630 | ||||||
| 4. La caractéristique de fonctionnement instantané du disjoncteur de distribution électrique doit être fixée à 10in + 20 %, et celle du disjoncteur de protection moteur à 12in ± 20 %. |
CJMM1-63, 100, 225, Dimensions d'encombrement et d'installation (connexion de la carte avant)
| Tailles (mm) | Code modèle | |||||||
| CJMM1-63S | CJMM1-63H | CJMM1-63S | CJMM1-100S | CJMM1-100H | CJMM1-225S | CJMM1-225 | ||
| Dimensions des contours | C | 85,0 | 85,0 | 88.0 | 88.0 | 102.0 | 102.0 | |
| E | 50,0 | 50,0 | 51.0 | 51.0 | 60,0 | 52.0 | ||
| F | 23.0 | 23.0 | 23.0 | 22,5 | 25.0 | 23,5 | ||
| G | 14.0 | 14.0 | 17,5 | 17,5 | 17.0 | 17.0 | ||
| G1 | 6.5 | 6.5 | 6.5 | 6.5 | 11,5 | 11,5 | ||
| H | 73,0 | 81.0 | 68.0 | 86.0 | 88.0 | 103.0 | ||
| H1 | 90,0 | 98,5 | 86.0 | 104.0 | 110,0 | 127.0 | ||
| H2 | 18,5 | 27.0 | 24.0 | 24.0 | 24.0 | 24.0 | ||
| H3 | 4.0 | 4.5 | 4.0 | 4.0 | 4.0 | 4.0 | ||
| H4 | 7.0 | 7.0 | 7.0 | 7.0 | 5.0 | 5.0 | ||
| L | 135,0 | 135,0 | 150,0 | 150,0 | 165,0 | 165,0 | ||
| L1 | 170,0 | 173,0 | 225.0 | 225.0 | 360.0 | 360.0 | ||
| L2 | 117.0 | 117.0 | 136.0 | 136.0 | 144.0 | 144.0 | ||
| W | 78.0 | 78.0 | 91,0 | 91,0 | 106.0 | 106.0 | ||
| W1 | 25.0 | 25.0 | 30.0 | 30.0 | 35.0 | 35.0 | ||
| W2 | - | 100,0 | - | 120,0 | - | 142.0 | ||
| W3 | - | - | 65.0 | 65.0 | 75,0 | 75,0 | ||
| Dimensions d'installation | A | 25.0 | 25.0 | 30.0 | 30.0 | 35.0 | 35.0 | |
| B | 117.0 | 117.0 | 128.0 | 128.0 | 125,0 | 125,0 | ||
| od | 3.5 | 3.5 | 4.5 | 4.5 | 5.5 | 5.5 | ||
CJMM1-400,630,800,Dimensions d'encombrement et d'installation (connexion de la carte avant)
| Tailles (mm) | Code modèle | |||||||
| CJMM1-400S | CJMM1-630S | |||||||
| Dimensions des contours | C | 127 | 134 | |||||
| C1 | 173 | 184 | ||||||
| E | 89 | 89 | ||||||
| F | 65 | 65 | ||||||
| G | 26 | 29 | ||||||
| G1 | 13,5 | 14 | ||||||
| H | 107 | 111 | ||||||
| H1 | 150 | 162 | ||||||
| H2 | 39 | 44 | ||||||
| H3 | 6 | 6.5 | ||||||
| H4 | 5 | 7,5 | ||||||
| H5 | 4.5 | 4.5 | ||||||
| L | 257 | 271 | ||||||
| L1 | 465 | 475 | ||||||
| L2 | 225 | 234 | ||||||
| W | 150 | 183 | ||||||
| W1 | 48 | 58 | ||||||
| W2 | 198 | 240 | ||||||
| A | 44 | 58 | ||||||
| Dimensions d'installation | A1 | 48 | 58 | |||||
| B | 194 | 200 | ||||||
| Od | 8 | 7 | ||||||
Schéma de découpe de connexion du panneau arrière - Branchement
| Tailles (mm) | Code modèle | ||||||
| CJMM1-63S CJMM1-63H | CJMM1-100S CJMM1-100H | CJMM1-225S CJMM1-225H | CJMM1-400S | CJMM1-400H | CJMM1-630S CJMM1-630H | ||
| Dimensions du type de connexion à la plaque arrière | A | 25 | 30 | 35 | 44 | 44 | 58 |
| od | 3.5 | 4,5*6 trou profond | 3.3 | 7 | 7 | 7 | |
| od1 | - | - | - | 12,5 | 12,5 | 16,5 | |
| od2 | 6 | 8 | 8 | 8.5 | 9 | 8.5 | |
| oD | 8 | 24 | 26 | 31 | 33 | 37 | |
| oD1 | 8 | 16 | 20 | 33 | 37 | 37 | |
| H6 | 44 | 68 | 66 | 60 | 65 | 65 | |
| H7 | 66 | 108 | 110 | 120 | 120 | 125 | |
| H8 | 28 | 51 | 51 | 61 | 60 | 60 | |
| H9 | 38 | 65,5 | 72 | - | 83,5 | 93 | |
| H10 | 44 | 78 | 91 | 99 | 106,5 | 112 | |
| H11 | 8.5 | 17,5 | 17,5 | 22 | 21 | 21 | |
| L2 | 117 | 136 | 144 | 225 | 225 | 234 | |
| L3 | 117 | 108 | 124 | 194 | 194 | 200 | |
| L4 | 97 | 95 | 9 | 165 | 163 | 165 | |
| L5 | 138 | 180 | 190 | 285 | 285 | 302 | |
| L6 | 80 | 95 | 110 | 145 | 155 | 185 | |
| M | M6 | M8 | M10 | - | - | - | |
| K | 50,2 | 60 | 70 | 60 | 60 | 100 | |
| J | 60,7 | 62 | 54 | 129 | 129 | 123 | |
| M1 | M5 | M8 | M8 | M10 | M10 | M12 | |
| W1 | 25 | 35 | 35 | 44 | 44 | 58 | |
Les disjoncteurs boîtier moulé sont des dispositifs de protection électrique conçus pour protéger les circuits électriques contre les surintensités. Ces surintensités peuvent être causées par une surcharge ou un court-circuit. Les disjoncteurs boîtier moulé fonctionnent sur une large gamme de tensions et de fréquences et disposent de seuils de déclenchement réglables, inférieurs et supérieurs. Outre leur fonction de déclenchement, ils peuvent également servir d'interrupteurs de sectionnement manuel en cas d'urgence ou lors d'opérations de maintenance. Les disjoncteurs boîtier moulé sont normalisés et testés pour la protection contre les surintensités, les surtensions et les défauts, garantissant ainsi un fonctionnement sûr dans tous les environnements et pour toutes les applications. Ils constituent un interrupteur de réarmement efficace pour couper l'alimentation d'un circuit électrique et minimiser les dommages causés par une surcharge, un défaut à la terre, un court-circuit ou un dépassement de l'intensité limite.
L'utilisation des disjoncteurs boîtier moulé (DBM) dans divers secteurs industriels a révolutionné le fonctionnement des systèmes électriques. Le DBM est un composant essentiel pour garantir le fonctionnement sûr et efficace du circuit. Il assure une protection contre les surcharges, les courts-circuits et autres défauts électriques, ce qui est crucial pour prévenir les accidents électriques et les risques d'incendie.
L'un des principaux avantages des disjoncteurs à boîte de transfert (MCCB) réside dans leur capacité à supporter des courants élevés. Ils sont spécifiquement conçus pour protéger et contrôler les circuits à forte consommation d'énergie. Des secteurs tels que la production industrielle, l'exploitation minière, le pétrole et le gaz, ainsi que les transports, dépendent fortement des MCCB pour protéger leurs équipements et infrastructures électriques critiques. Leur capacité à gérer efficacement les courants élevés et à couper automatiquement l'alimentation en cas de surcharge ou de panne les rend indispensables dans ces industries.
Un autre avantage important du disjoncteur à boîte de Petri (MCCB) réside dans sa facilité d'installation et d'utilisation. De taille compacte, il s'intègre aisément aux tableaux électriques. Sa conception modulaire offre une grande flexibilité de configuration, permettant ainsi son adaptation à différentes exigences d'installation. De plus, les disjoncteurs à boîte de Petri sont disponibles dans une large gamme de courants nominaux, garantissant leur compatibilité avec diverses charges électriques. Cette facilité d'installation et d'utilisation en fait un choix privilégié pour les nouvelles installations et les rénovations de systèmes électriques existants.
La précision et la fiabilité des disjoncteurs à boîte de transfert (MCCB) sont essentielles au fonctionnement continu des systèmes électriques. Les MCCB sont dotés de mécanismes de déclenchement avancés qui détectent et traitent avec précision les défauts électriques. Ils sont équipés de différents types de capteurs (thermiques, magnétiques, électroniques, etc.) capables de détecter les anomalies électriques. Dès qu'un défaut est détecté, le MCCB se déclenche et coupe immédiatement l'alimentation, évitant ainsi tout dommage supplémentaire.
Les disjoncteurs boîtier moulé (MCCB) contribuent également à améliorer l'efficacité énergétique globale des systèmes électriques. En protégeant efficacement contre les pannes et les surcharges électriques, ils préviennent la surchauffe et le gaspillage d'électricité. Cela réduit non seulement les risques de dommages matériels, mais optimise aussi la consommation d'énergie. Face à l'importance croissante accordée aux économies d'énergie et au développement durable, l'utilisation de disjoncteurs boîtier moulé est essentielle pour garantir un fonctionnement efficace et respectueux de l'environnement dans différents secteurs industriels.
En résumé, l'utilisation généralisée des disjoncteurs boîtier moulé a considérablement amélioré la sécurité, la fiabilité et l'efficacité des systèmes électriques dans divers secteurs industriels. Leur capacité à supporter des courants élevés, leur facilité d'installation, la précision de leur détection des défauts et leur contribution à l'efficacité énergétique en font des composants indispensables à la protection et au contrôle des réseaux électriques. Avec les progrès technologiques, les disjoncteurs boîtier moulé continuent d'évoluer pour répondre aux exigences croissantes des systèmes électriques modernes. À mesure que les industries dépendent davantage de l'électrification pour fonctionner, le rôle des disjoncteurs boîtier moulé dans la garantie d'un fonctionnement sûr et efficace des circuits ne fera que s'accroître.